Comparative gas chromatography-mass spectrometry study of the composition of microbial chemical markers in feces

GEORGY A. OSIPOV, NATAL’YA B. BOIKO, NATAL’YA F. FEDOSOVA, SVETLANA A. KASIKHINA & KONSTANTIN V. LYADOV

Research Center of Cardiovascular Surgery, Moscow andTreatment & Rehabilitation Center, Moscow, Russia

Abstract

Gas chromatography-mass spectrometry analysis was used to determine fatty acids, the markers of microorganisms, in the feces, including neonatal transitional stool and meconium, and healthy adults of different ages. It revealed the markers of Eubacterium, Clostridium, Bifidobacterium, Lactobacillus, Enterococcus, Rhodococcus, Streptomyces, Enterobacteriaceae, Bacteroides, Helicobacter pylori, Alcaligenes, Peptostreptococcus, Candida, Streptococcus, Staphylococcus, Fusobacterium sp. and other bacteria, as well as yeast, microscopic fungi, and viruses. The fecal microbial concentration was estimated to be within (0.3–4) 1011/g depending on the examinees’ age and sex, which is in agreement with genetic and cultural findings in relation to both the total number of microorganisms and the dominant role of the bacteria of the genera Eubacterium, Bacteroides, Clostridium, and Bifidobacterium in the feces.

Key words: Fatty acids, meconium, microorganism, fecal microbiota

Introduction

Conventional methods for determining intestinal microbiota composition rely on the cultivation of bacteria on selective media. However, many bacteria are difficult to culture or are uncultivable and often media are not truly specific or are too selective for certain bacteria. Molecular tools introduced in microbial ecology have made it possible to study the composition of intestinal flora in a culture-independent way based on the detection of rRNA (1).

The microbial detection technique using fatty acid (FA) markers is similar to the genetic one (polymerase chain reaction (PCR), 16S RNA sequence measurements, etc.) since the composition of FAs was determined in DNA and reproduced via replication of a genome portion by transfer RNA, followed by mitochondrial FA synthesis by messenger RNA. Therefore, the profile of FA bacteria is their business card or ‘fingerprint’ (2). It is as conservative as the structure of DNA, but it is also prone to mutations due to environmental factors. The stability of a set of the FAs that form microbial cells, as evidenced by bacteriological paleontological studies that show that FA composition of some microbes and the pool of their FAs as a whole, has remained constant for as long as 2.5 billion years (3).

Chemical methods for microbial differentiation are finding increasing use and they are frequently more rapid and universal than earlier approaches (4). For these purposes, gas chromatography (GC) and GC in combination with mass spectrometry (GC-MS) are in most common use, and provide unique information on the composition of monomer chemical components of a microbial cell and metabolites (5–7). Markers of this type may be determined and used to detect microorganisms in a complex environment matrix (8–11). Different applications of chemical marker analysis have been described (12,13). Chemo differentiation is widely employed as a method for identifying and confirming the taxonomic position of microorganisms. The technique is used to work with microorganisms isolated in pure cultures and based on the application of very large databases containing information on the composition of FAs of several thousands of bacterial strains and microscopic fungi. This system is exemplified by a specialized Microbial Identification System chromatograph (‘Sherlock’; MIDI Inc., Newark, DE, USA (14). The specific features of the composition of FA are used along with other parameters in bacterial taxonomy and clinical bacterial diagnosis (15).

The capacities of GC-MS detection of microorganisms by their markers, including FAs, in practical medicine have been little studied. Attempts to detect bacteria from blood by using muramic (16–18) and

b-hydroxymyristic (19) acids as a markers have been reported. Control of meningococci from the presence of b-hydroxylauric acid in blood (20) and gonococci from the concomitant presence of b-hydroxylauric and b-hydroxymyristic acids (21) have been pro- posed. GC-MS potential for diagnosis and stud- ies on in clinical microbiology research have been discussed (5). Recently 3-hydroxy FAs in tissues

(22) and saliva (23) were investigated as diagnostic markers of endotoxin intraperitoneal injection and chronic periodontitis.

We have previously described examples of microbial detection in infectious processes by GC-MS (24). Homeostasis of small molecules of microbial origin has been found in human blood, which is impaired in inflammation (25).

The microbiota of intestine is extremely rarely studied in gastroenterology, mainly during surgical intervention. If so doing, the limited range of nosocomial pathogens is mainly detected by cultural and biochemical methods under aerobic cultivation. That is why changes in the normal intestinal microbiota are more frequently determined from the composition of fecal microorganisms (26), by using, among other techniques, GC of long chain FAs (27). However, the chromatographic techniques used to detect a signal from flame ionization fail to provide adequate data on microbial markers due to the limited sensitivity, selectivity, and specificity of the technique in detecting a wide FA range required for analyzing such a complex microbial community as the intestinal microbiota.

This study has attempted to fill this gap by measuring the quantitative and qualitative composition of the microbiota of feces (as the reference substrate) from the perspective of the intestinal wall (together with a mucosal layer) in healthy donors and in patients with irritable bowel syndrome (IBS) and associated antibiotic diarrhea (AAD). Our first measurement of intestine mucosal microbiota was published in Russian (28). The present paper is an advanced version of that investigation and includes additional markers – fatty aldehydes – for monitoring intestinal dominants: Eubacterium, Propionibacterium, Bifidobacterium, Closyridium, and other plasmalogen-containing microbes. The concentrations of microbial FAs and aldehydes were measured by GC-MS in the mass-fragmentography mode, i.e. monitoring the specific ions of the mass spectrum of target substances (markers).

 

Material and methods

GC-MS

The averaged feces samples, 3–4 mg, were exposed to acid methanolysis in 1 M HCl in methanol at 80°C for 1 h. As a result of methanolysis, FAs were released as methyl esters. They were extracted twice with 200 μl of hexane, dried, and treated in 20 μl of N,O-bis(trimethylsilyl)-trifluoroacetamide at 80°C for 15 min to produce trimethylsilyl esters of hydroxy acids and sterols. A mixture of the esters in an amount of 2 μl was injected into the HP-5973 Hewlett-Packard GC-MS system (USA). The standard programs of the device were used to control and process data. The specimen was chromatographically separated on a capillary column with the methylsilicone chemically bonded phase HP-5ms Hewlett-Packard. The length of the column was 25 m; its internal diameter was 0.25 mm. The mode of an analysis was programmed; the rate of oven heating was 5°/min in the range of 130–320°C. The mass spectrometer was quadrupole with electron (70 Ev) ionization, it operated in the selective ion mode (SIM), regularly detecting 20 ions in each of 5 intervals. The intervals and ions were chosen so that the concentrations of marker FAs of detectable microbial species were selectively measured. The strong ion m/z 87 in the spectra of FAs was used to detect minor quantities of microbial acids of C12–C20. Ion 75 was used to detect fatty aldehyde as dimethyacetals (DMA). Ion 175 was constantly taken in each interval to detect b-hydroxy acids, which it is specific to and intensive in the spectrum. Intensive ions 301, 315, and further every 14 unit masses (of structure M-15) were chosen as witnesses of the molecular ion of hydroxy acids (tridecanoic, tetradecanoic, and the following acids in the homologous series). Ion 312 was taken as molecular to reveal the isomers of nonadecanoic acid, which are of importance in diagnosing staphylococci and enterococci. A total of 33 ions were entered into a monitoring program for SIM recording of a chromatogram. According to our estimates, this algorithm for detecting the mass spectral parameters of a biological specimen can detect about 200 known microbial FAs, alcohols, DMAs, and sterols, which is sufficient to reveal and assay more than 170 taxons of clinically significant microorganisms at the level of a genus or a species.

The preset program was applied to automatically integrate the peak areas of markers on the mass fragmentograms. Then these data were entered into the calculation program prepared in the EXCEL tables. The data were calibrated with deuterated tridecainoic acid as internal standard and elsewhere published data on FA composition of clinically important microorganisms and our clinical isolates as well. Biological reproducibility (accuracy of measurements) was calculated as 20% in statistical measurements (24,25).

 

Calculation of the composition and number of effective microbial cells

While drawing up a program of analysis, developing an algorithm for identifying and calculating the number of microorganisms, we were guided by the principle of a limited number of the members of a local microbial community, the recognition of the profile of microbial FAs as an image during computerassisted identification, and by the principle of a marker in the application only to the microbial com- munity under consideration (10).

Different microorganisms are known to contain about 200 FAs as components of cellular wall lipids, which distinguish them from human cells. In intestinal microorganisms some substances appeared to be specific to one taxon. The number of cells of these microorganisms was calculated by the concentration of a marker substance, by using the known data on the content of FA in the microbial cell, on the conditions for preparing a sample and calibrating a device.

The chromatographic peak area of a marker is in proportion to its concentration and thus to the con- centration of a respective microorganism, which is estimated as the number of cells N1 per unit of volume or weight of a sample, using the formula:

N1 Ai[Mst/(q*Msam*Ast)]/Ri1

where the expression enclosed in brackets, the constant coefficient

k Mst/q/Msam/Ast Mst(mg)/5.1 10(–15)g/ Msam(mg)/Ast

In these formulae, Ai is the peak area of a marker, Mst is the amount (mg) of the reference injected into the sample, Msam is the amount of the sample, Ast is the peak area of the reference, Ri1 is the proportion (%) of the marker with the index i in the profile of FA of a detected microbe with number 1 (N1), q is the coefficient equal to 5.1 10(–15)g, which contains the basic value calculated with reference to the number 5.9 1012 microbial cells available in 1 g of microbial biomass and the proportion of cellular FA, which is taken as, on the average, 3%.

The number of cells of any following microorganism may be calculated, by using the similar formula N2 Ai k/Ri2 and so on, by multiplying the peak area of a marker (Ai) that is used to make calculations, by the coefficient k and dividing by the proportion of the marker as a part of total FA of this microorganism as a percentage.

The effective number (i.e. corresponding to the marker’s concentration measured at this moment) of bacteria including Clostridium ramosum group, C. perfringensC. difficileBacteroides fragilis, the yeast Candida albicans, bacteria of the genera Bifidobacterium, Eubacterium, Propionibacterium, Streptomyces, Nocardia, Alcaligenes, Pseudomonas, Enterococcus, Staphylococcus, the family Enterobacteriaceae, and others, as well as non-specific fungi from ergosterol (Aspergillus, Mucor, etc.) was estimated by the same procedure – one taxon, one marker. Some viruses are involved in the synthesis of sterols in human cells, which can be deter- mined from the product of transformation by their enzyme of human cholesterol to cholestendiol (herpes viruses), isomers of cholestadiene and cholestadienon (cytomegaloviruses). If the substance does not have the property of a marker, i.e. it may be referred to two taxons or more, here the contribution of each microorganism, if the solution of a system of equations for two substances (or, accordingly, more) is applied. We have described the procedure for calculating ecological microbial communities elsewhere (3,10,29).

 

Detection of taxonomic FA

By using the known data on the most common intestinal microorganisms (30) we formed a local database on the composition of FAs (Table I, database), which was used to identify markers and to make calculation formulae. Below is shown the substantiation of affiliation of markers to specific microorganisms that are putative intestinal wall inhabitants, as well as the choice of a specific marker or a scheme for calculation of their concentrations.

Bifidobacterium. The number of bifidobacteria was estimated from the component of the specific cellular membrane lipid plasmologen, wherein one of the Fas of glyceride is replaced by fatty aldehyde. The distinctive feature of bifidobacteria is 9-octadecenoic aldehyde (31) that was registered as a measure of their concentrations.

Lactobacillus. Lactobacilli have clear markers, such as lactobacillic acid (31) and cisvaccenic acid (18:1Ä11), which are also found in other bacteria, such as Pseudomonas and Enterobacteriaceae. However, Pseudomonas is rarely detectable in the intestine in noticeable concentrations and the cross determination with enterobacteria is taken into account in the equation of balance of FA concentrations, by using additional markers. Cisvaccenic acid was used here to control lactobacilli.

 

 

Table I. List of fatty acids, aldehydes, and sterols detected in the feces indicating the most likely microorganisms in whose cells they usually were found.

 

No. Abbreviation* Chemical name Most likely microorganisms
1 C10 Decanoic Streptococcus
2 C12:0 Dodecanoic Non-specific
3 iC13 iso-Ridecanoic Bacillus subtilis
4 a13 anteiso-Tridecanoic Bacillus cereus
5 i14 iso-Tetradecanoic Peptostreptococcus anaerobius, Streptomyces, Bacillus, Bacteroides
6 14:1ω7 7,8-Tetradecenoic Haemophilus parahaemolyticus, Arcobacter
7 14:1ω5 9,10-Tetradecenoic Clostridium
8 14:1ω3 11,12-Tetradecenoic Nocardia
9 10Me14 10-Methyl-tetradecanoic Actinomycetes
10 15:1ω6 9,10-Pentadecanoic Clostridium
11 i15 iso-Pentadecanoic Propionibacterium
12 a15 anteiso-Pentadecanoic Staphylococcus, Bacillus
13 10Me15 10-Methyl-pentadecanoic Actinomycetales
14 i16:1 iso-Hexadecenoic Pseudonocardia
15 16:1ω9 7,8-Hexadecenoic Clostridium ramosum
16 16:1ω5 11,12-Hexadecenoic Ruminococcus
17 i16:0 iso-Hexadecanoic Streptomyces, Corynebacterium betae, Curtobacterium, Cellulomonas
18 16:0 Hexadecanoic Non-specific
19 10Me16 10-Methyl-hexadecanoic Rhodococcus
20 i17:1 I iso-Heptadecenoic I Campylobacter mucosalis
21 17:1 Heptadecenoic Candida albicans, Mycobacterium
22 i17:0 iso-Heptadecanoic Bacillus, Prevotella, Propionibacterium
23 a17:0 anteiso-Heptadecanoic Corynebacterium CDC group
24 17cyc cyclo-Heptadecanoic Enterobacteriaceae
25 17:0 Heptadecanoic Non-specific
26 10Me17 10-Methyl-heptadecanoic Actinomadura
27 18:1ω7 11,12-Octadecenoic Lactobacillus
28 i18 iso-Octadecanoic Clostridium difficile, Bacillus subtilis,
29 10Me18 10-Methyl-octadecanoic Mycobacterium, Nocardia, Corynebacterium bovis, C. xerosis group,

C. urealyticum, Actinomycetes

30 19cyc cyclo-Nonadecanoic Enterococcus,
31 20:1 Eicosenoic Propionibacterium jensenii, Actinomyces
32 i19 iso-Nonadecanoic Bacillus subtilis, Bacteroides hypermegas
33 a19 anteiso-Heptadecanoic Staphylococcus
Hydroxy-acids
34 h10 Hydroxy-decanoic† Pseudomonas, Comamonas
35 hi11 Hydroxy-iso-undecanoic Stenotrophomonas maltophilia
36 h12 Hydroxy-lauric Acinetobacter, Moraxella
37 hi13 Hydroxy-iso-tridecanoic Stenotrophomonas maltophilia
38 h13 Hydroxy-tridecanoic Selenomonas
39 h14 Hydroxy-myristic Fusobacterium, Haemophilus
40 hi15 Hydroxy-iso-pentadecanoic Prevotella, Flavobacterium, Capnocytophaga
41 h16 Hydroxy-palmitic Bacteroides,Wolinella
42 hi17 Hydroxy-iso-heptadecanoic Bacteroides fragilis
43 h17 Hydroxy-heptadecanoic Bacteroides ruminicola
44 10h18:1 10-Hydroxy-octadecenoic Clostridium perfringens
45 h18 Hydroxy-stearic Helicobacter pylori
46 10h18 10-Hydroxy-stearic Clostridium perfringens
47 ha15 Hydroxy-anteiso-pentadecanoic Bacteroides
48 ha17 Hydroxy-anteiso-heptadecanoic Bacteroides
49 2h12 2-Hydroxy-lauric Pseudomonas aeruginosa, Alcaligenes
50 2h14 2-Hydroxy-myristic Sphingomonas
51 2hi15 2-Hydroxy-iso-pentadecanoic Flavobacterium, Flexibacter
52 2h16 2-Hydroxy-palmitic Pseudomonas cepacea, Flexibacter
53 2hi17 2-Hydroxy-iso-heptadecanoic Flexibacter
Fatty aldehydes
54 14a Tetradecanoic Eubacterium lentum, Bifidobacterium
55 i15a iso-Pentadecanoic Propionibacterium acnes
56 a15a anteiso-Pentadecanoic Eubacterium, Peptostreptococcus
57 15a Pentadecanoic
58 16:1a Hexadecenoic Eubacterium moniliforme
59 i16a iso-Hexadecanoic Eubacterium lentum

(Continued)

 

 

 

Table I. (Continued)

 

No. Abbreviation* Chemical name Most likely microorganisms

  • 16a Hexadecanoic Non-specific
  • 17a Heptadecanoic Propionibacteriumfreudenreichii
  • i17a iso-Heptadecanoic Propionibacterium
  • a17a anteiso-Heptadecanoic Eubacteriumlentum
  • 18:1ω9a 9,10-Octadecenoic Bifidobacterium
  • 18:1ω7a 11,12-Octadecenoic Eubacterium, Clostridiumramosum
  • 19cyca cyclo-Nonadecanoic Enterococcus

Sterols

  • Coprostanol Dehydro-cholesterol Eubacterium
  • Cholestendiol Herpesvirus
  • Campesterol Microscopicfungi
  • b-Sitosterol Microscopicfungi
  • Cholestadienon Cytomegalovirus
  • Ergosterol Microscopicfungi

 

*In 17:1, 17 is the number of carbon atoms, the figure after the colon denotes the number of double bonds; h, hydroxyacid; a,I, indicates methyl-branching; cyc, cyclopropanoic acid. For example, 2hi15 means 2-hydroxy-iso-pentadecanoic acid.

†3-Hydroxy-acids, if position of hydroxyl is not indicated.

 

Enterobacteriaceae family. Enterobacteriaceae are close in the profile of FA, at the same time their genus-specific, occasionally species-specific, differentiation in the pure culture of cells is assumed, but they are barely distinguishable if they are simultaneously present in the community of microorganisms. Their markers are b-hydroxymyristic acid (h14), cycloheptadecanoic (17cyc), and cicvaccenic acids have a rank of a family, with multiple intersections with the representative of other families. Here in the absence of Pseudomonas, the number of enterobacteriaceae as a whole can be actually measured by the concentration of 17cyc (15,31).

Eubacterium. The representatives of this genus comprise one of the basic intestinal inhabitants. Their marker, dehydrocholesterol (coprostanol), is a product of the interactive metabolism of Eubacterium and cells of the host’s body (32). For differentiation of eubacteria at the level of a species and subspecies, their differences in the composition of fatty aldehydes (31) are used (see Table IV). Furthermore, the species of Eubacterium have been determined by specific fatty aldehydes, among them, E. lentum by iso-hexadecanoic aldehyde (i16a), a group of strains of this species, including E. lentum 7741, and others wherein tetradecanoic aldehyde (14a) are the leaders (33). The main group of species of the genus Eubacterium (E. moniliformeE. nodatumE. sabureum, and others) were separately determined by 11-octadecenoic (18:1w7a) aldehyde (31).Propionibacterium. Iso- and anteisoheptadecanoic (i17a and a17a) aldehyde were assigned to this genera according to ‘Sherlock’ (31) and our own measurements of Propionibacterium freudenreichii type culture from the All-Russian Collection of Microorganisms

– VKM.

Peptostreptococcus anaerobius. This microorganism is known to have less common even iso-acids with a number of carbon atoms from 10 to 16 in the profile of FAs (34). We used iso-dodecanoic (i12) and iso- tetradecanoic (i14) acids as markers.

Ruminococcus. These were determined by 11-hexadecanoic acid found by use in the natural isolates of ruminococci (35).

Propionobacterium acnes. For identification of this microorganism, iso-pentadecanoic aldehyde (i15a) (our own data) minus the contribution of Eubacterium spp. was used.

Bacillus. Bacilli of the species B. cereus and B. subtilis may be detected by specific branched acids with 13 carbon atoms: i13 and a13. B. megaterium was determined from the residue of anteiso-pentadecanoic (ai15) acid, using the balance equation (36).

Acinetobacter. It is convenient to use 2-hydroxy dodecanoic acid (15) as a generic sign in the presence of 3-hydroxydodecanoic acid.

Clostridium perfringens. They have clear markers that are characteristic of the clostridia group including, besides C.perfringensC.histolyticum, and C.oedematiens. These are 10-hydroxystearic and 10-hydroxy- octadecenoic (10h18) acids readily detectable by specific ions in the mass spectrum [our data, published in Russian]. These substances are not cellular components of clostridia themselves, but they are associated with the breakdown of tissue cells of the organism by bacterial enzymes (37).

  1. difficile and other clostridia. C. difficile differs from other clostridia in that iso-octadecanoic (i18) acid (38)isin the composition of FA. C. histolyticum differs in that iso-tetradecenoic acid is present in FA profile, and the C. ramosum group differs in that 7-hexadecenoic (16:1Ä7) acid (31) is in the FA profile.

 

Bacteroides. The anaerobic bacteria of the group B. fragilis have a good marker – a pair of branched hydroxy acids: hydroxy-iso-heptadecanoic (hi17) and anteiso- heptadecanoic (ha17) ones (39). The number of the remaining bacteroides was estimated from the residue in the balance of hydroxy-hexadecanoic acid.

 

Streptococcus. Many streptococci are ‘invisible’ in the presence of biological fluid components due to the coincidence of intrinsic FAs with the acids of a substrate. However, a group of oral or a-streptococci, such as Strep. mutansStrep. salivarius, etc. is detectable from decanoic acid C10 (40) and the monounsaturated acids 16:1Ä7 and 18:1Ä11 (31). Strep. mutans was detected by its specific 11-eicosenoic acid – 20:1w9 (31).

 

Enterococcus. Enterococcus faecalis and E. faecium with their prevalence in the community may be also be detectable by cis-9,10-methylene-hexadecanoic acid (9,10-19cyc) acid (31).

 

Candida albicans, Mycobacterium. Heptadecenoic acid is a specific sign of the yeast C. albicans in the lipid fraction of human biological fluids [our own data]. It cannot be ruled out that it may be also referred to mycobacteria (41).

 

Microscopic fungi. The non-specific marker of clinically significant microscopic fungi (AspergillusCandidaMucor, etc.) is ergosterol (42), as well as campesterol and b-sitosterol (43) [authors’ own measurements].

 

Flavobacterium (Sphingobacterium, Chriseobacterium). These bacteria have branched odd 2-hydroxy acids in the composition of cellular sphingolipids (2hi15, 2hi17) that may serve as markers in clinical tests (15).

 

Streptomyces, Nocardiopsis. The FA profiles of biological fluids from patients contain a great amount of iso-hexadecanoic acid (i16), which substantially exceeds the possible proportion of P. anaerobius and Bacillus that have this substance as a constituent of the cellular membrane. The representatives of the genus Streptomyces and some other actinomycetes (such as Nocardiopsis dasonvilley isolated by us from an intestinal mucosal biopsy specimen) are rare organisms (of those we know) that have this sign. The strains of streptomycetes, which have as high as 40% of i16 in the profile of FAs have been described in the literature (44). There is also evidence for the participation of streptomycetes in the colonization and inflammation of different human organs.

 

Actinomadura. They were determined by 10-methylheptadecanoic acid (10Me17) (44) minus the contribution of rhodococci.

 

Pseudonocardia. This genus determined by iso-hexadecenoic acid (i16:1) (44) minus the contribution of rhodococci to it’s measured value.

 

Rhodococcus. Rhodococci are likely to be responsible for the presence of 10-methyl-hexadecanoic acid (10Me16) (44) in the composition of FAs of all the samples we have studied.

 

Nocardia. They were determined by the tetradecenoic (presumably 14:1d11) acid isomer detected by us in the isolate of Nocardia from the patient’s blood. Nocardia asteroides and others were detected by trans-9,10-hexadecenoic acid (16:1w7t) (44).

Helicobacter pylori. Hydroxyoctadecanoic acid (h18) is usually present in the clinical samples. This hydroxy acid is characteristic of the genus Francisella and the species Helicobacter pylori (45). In our case it is logical to assign the presence of h18 to H. pylori or F. filomiragiaH. pylori is usually associated with chronic gastritis; however, it is detectable in the tissues of patients with oral aphthous ulcers (46), atherosclerotic plaques (47), and hepatic abscesses. Moreover, GC-MS analysis of the strains isolated from the intestinal biopsy specimens in this study indicated the presence of 11Me18:1, 2h18:1, 11-OMe-19, and cholesterol along with H. pylori-characteristic FA (18:1d11, 16:0, 19cyc, 3h16, 3h18). In the manual of non-fermenting gram-negative bacteria (15), the FA profile of H. pylori showed 11Me18:1 (under the name of 19:1br).

 

Campylobacter mucosalis. This species has rare iso-heptadecenoic (i17:1) acid (31) as a component of FA, which was monitored by taking into account the contribution of bacteria of the genera Chriseobacterium and Flavobacterium, if their marker 2hi15 was present.

 

Fusobacterium. The only distinctive component in the cellular FA of these bacteria is 3-hydroxymyristic acid (3h14) (48), which also occurs in other clinically significant gram-negative microorganisms, such as E. coli, Alcaligenes, Serratia, etc. Therefore, Fusobacterium and Haemophilus may be determined only from the residue, using the balance equation for 3h14.

 

Staphylococcus. Staphylococci are known to contain odd iso- and anteiso-branched acids with the number of carbon atoms 15, 17, and 19 (49). Anteiso-non-adecanoic (ai19) acid may be used as a generic marker in this community.

 

Corynebacterium CDC groups. A residue is frequently observed after consideration of all the microorganisms that have anteisoheptadecanoic acid in the composition of FA. This may be most likely to be attributable to C. betaeC. aquaticumListeria, and Brevibacterium, as well as individual groups of CDC A-3, A-4, A-5, B-1a, B-3a, B-1b, and B3b, which contain particularly high levels of the acids a15 II a17 [50].

 

Viruses. By comparing our data with the results of examination of patients with different diseases using immunological and genetic studies, we found a correlation in the appearance of the cholesterol metabolite cholestenediol in herpes virus infection and cholestadienone in cytomegalovirus infection.

The feces specimens were examined for the content of 135 microbial substances, which provide information on more than 170 taxons of microorganisms. All specific substances were confirmed just in the objects studied using mass spectra in the direct scanning while comparing them with the standard libraries (NIST and Wiley) of the mass spectra of the GC-MS system.

 

Results

GC-MS analysis of FA fractions in feces specimens revealed that the major components (at the level of

> 1% relative content) are even acids with 12–18 carbon atoms: C18:1, C16:0, C18:2, C18:0, C16:1

(in order of decreasing levels in the profile of FAs), as well as polyunsaturated FAs (C20:n, C22:n), cholesterol, aldehydes, and 2-hydroxy acids. The level of long-chain acids (C23 and higher) is occasionally 1%. Each of the odd acids C15:0 and C17:0 forms about 1%.

The above substances are the lipid components of human cells and form the natural background against which the minor microbial components that are not characteristic of the human cells are detected in the examined samples. The chromatograms obtained by the selective ion method can confidently detect microbial components in the presence of predominant human waste components. For the most part, the peaks of target substances are superposition-free, rather distant from the peak of a substrate and there- fore they may be accessible for automatic random integration in accordance with the standard program of the GC-MS system. The list of FAs, aldehydes, and sterols detected in feces specimens is given in Table I, indicating the most likely microorganisms in whose cells they usually were found.

The composition of intestinal microbiota has not been previously studied by GC-MS analysis. Moreover, there are no values of the composition of its microorganisms, measured by any routine procedure. In doing so, we cannot compare our results with the reference values.Therefore we also had to measure the microflora of feces in some samples from healthy persons of different ages and sex, as well as those of neonatal transitional stool and meconium (Table II). Since it had been thoroughly studied in the qualitative and quantitative senses, we used the fecal microflora as a reference material to substantiate the validity of the data of the future analysis of the microbiota of the intestinal wall and other objects by MS of microbial markers.

The whole number of microorganisms in feces varies from 3 1010 to 4 1011 in healthy adults and children. Minor values are specific for children and the elderly, which are consistent with known data. Really, the number of bifidobacteria is maximum in children and adults in comparison with newborn and older persons (Table II). In Table III, the microorgan- isms are distributed by groups: the first entries show all anaerobes, with the leading ratio of Eubacterium. Next are clostridia, bacteroides, lactobacilli, and bifidobacteria. In persons with a formed intestinal microbiota, the proportion of anaerobes is 70–90% of the total number, as evidenced by our measurements. The aerobes are mainly represented by cocci and bacilli of different taxons (2.4–13.5%), as well as aerobic actinomycetes (actinobacteria) (1.1–15.3%) and microscopic fungi.Enterobacteria,pseudomonads, other gram-negative aerobes, and viruses are present in minor concentrations (0.1–7.3%).

 

Discussion

To confirm the reliability of these and subsequent measurements, we present their comparison with the known estimates obtained by cultural, biochemical, and genetic studies (Table IV) (51–53). The total number of microorganisms in the feces was in the range of 0.3–4 1011 cells/g, which agrees with the known literature measurements obtained by genetic and cultural and biochemical studies. The relative number of anaerobes, i.e. 70–90%, as shown by our data, is also in agreement with the known number. It is difficult to compare the genus-specific distribution in this study with that available in the literature as the distribution has a wide range of values – within 36 orders of magnitude. Nevertheless, our data coincide with those on the priority of the genus Eubacterium, which numbered 0.3–3 1010 cells/g (109–1012, as shown by the data available in the literature), on the number of bacteroids, i.e. 0.2–2.4 1010 cells/g (1010–1012 according to the known data), Clostridium 109–1011cells/g (105–1011, respectively), Bifidobacterium 108–1010 cells/g (1010–1012).

Table II. Results of examination of the microbial composition (cell/g 106) of feces from healthy persons aged 12–60 years, neonatal meconium, and transitional stool of newborn and IBS patients before and after treatment.

Colonization level, cells/g 106, mean value

 

 

Meconium

 

Newborn

 

Adults

 

Elderly

IBS before treatment IBS after treatment
No. Microorganism (n 2) (n 2) (n 7) (n 1) (n 5) (n 3)
1 Eubacterium lentum 144 83 8213 2792 3223 978
2 Eubacterium 0 0 13 743 11 579 14 251 4693
3 Propionibacterium 18 0 13 442 7632 7875 4377
4 Ruminicoccus 315 368 506 30 1280 93
5 Peptostreptococcus 5519 539 2514 2991 6636 6384
6 Clostridium histolyticum 6 45 112 6 78 5
7 Clostridium propionicum 0 828 4055 384 829 198
8 Clostridium ramosum 638 884 3281 2096 1635 706
9 Clostridium difficile 1333 622 1046 820 390 377
10 Clostridium perfringens 6 34432 45470 9401 55209 11452
11 Bacteroides hypermegas 0 34 151 99 364 101
12 Porphyromonas 0 0 55 82 95 38
13 Prevotella 74 0 3137 8149 3452 2430
14 Bacteroides fragilis 0 0 1451 3223 2763 1575
15 Bacteroides ruminicola 52 0 2208 2130 6764 2822
16 Fusobacterium 0 601 385 428 907 280
17 Bifidobacterium 78 122 6589 1769 2441 2131
18 Lactobacillus 1054 2102 26 354 4545 19 070 3549
19 Helicobacter pylori 33 251 9968 368 2427 505
20 Pseudomonas aeruginosa 0 0 21 42 5 4
21 Acinetobacter 0 27 182 539 318 132
22 Stenotrophomonas 0 8 14 0 0 0
23 Alcaligenes 142 638 112 159 116 71
24 Flavobacterium 3 16 19 25 29 22
25 Enterobacteriaceae spp. 0 365 359 0 138 19
26 Campylobacter 125 14 44 0 9 30
27 Bacillus cereus 94 27 445 181 247 220
28 Bacillus megaterium 6 66 623 0 431 774
29 Enterococcus 10 1643 855 921 292 154
30 Staphylococcus 556 226 531 1991 271 175
31 Streptococcus (oral) 160 1169 4503 0 421 443
32 Streptococcus mutans 455 44 818 0 542 601
33 Enterococcus faecalis 0 0 1573 3587 1927 0
34 Streptococcus intermedius 0 685 2659 0 1371 2322
35 Coryneform CDC group 0 306 521 0 221 172
36 Nocardia spp. 54 18 146 70 172 86
37 Actinomycetes 10Me15 69 42 48 34 78 61
38 Pseudonocardia 133 41 43 477 128 153
39 Streptomyces 828 164 2378 518 1420 900
40 Rhodococcus 414 283 395 74 140 166
41 Mycobacterium/Candida 41 331 771 65 140 32
42 Actinomadura 9 0 22 0 7 11
43 Nocardia asteroides 235 126 868 0 159 56
44 Actinomycetes 10Me14 155 472 167 54 425 155
45 Microscopic fungi 1a 160 5350 2462 1173 783 500
46 Microscopic fungi 2b 290 6240 5118 8 1958 1526
47 Cytomegalovirus 16 0 59 0 29 19
48 Herpes virus 204 68 20 13 54 209
Total 13435 59292 168490 68484 141569 51770

Gas chromatography-mass spectrometry of microbial markers was used. Accuracy of measurements is 20% reproducible.

aMicroscopic fungi producing campesterol.

bMicroscopic fungi producing sitosterol.

 

 

 

These results confirm that GC-MS analysis of the fecal microbiota yields valid data on their number. Therefore, any data on the composition of microorganisms in biopsy specimens or any other clinical, as well as environment samples, may also be considered valid.

 

Table III. Grouping of microorganisms (cell/g 106) of feces from healthy persons aged 12–60 years, neonatal meconium, and transitional stool of newborn, and IBS patients before and after treatment.

Colonization level, cells/g 106, mean

 

 

Meconium

 

Newborn

 

Adults

 

Elderly

IBS before treatment IBS after treatment
Microorganism group (n 2) (n 2) (n 7) (n 1) (n 5) (n 3)
Total 13435 59292 168490 68484 141569 51770
Total anaerobes 9273 40918 142701 58544 129721 42734
Anaerobes, % 69 65 79 85 90 84
Aerobic gram-negative bacteria 271 1068 752 765 616 278
Cocci and bacilli 1281 3861 12 007 6680 5502 4690
Actinobacteria 1938 1783 5361 1292 2890 1793
Fungi 450 11 591 7579 1181 2741 2026
Viruses 220 68 80 13 83 228
Bacteroides 126 34 7002 13683 13439 6965
Clostridium 1982 36810 53964 12707 58140 12738
Proportion, %
Aerobic gram-negative 1.9 4.4 0.5 1.1 0.6 0.5
Cocci and bacilli 9.3 9.8 7.2 9.8 4.7 7.3
Actinobacteria 14.3 7.8 3.5 1.9 2.4 3.2
Fungi 3.5 12.3 9.4 1.7 2.6 4.9
Viruses 1.6 0.3 0.1 0.02 0.1 0.5
Enterobacteria 0.0 2.5 0.2 0.0 0.1 0.1
Bifidobacteria 0.5 0.2 4.6 2.6 2.4 3.9
Lactobacilli 8.0 17.1 13.6 6.6 10.7 5.9
Clostridium, % 14 39 25 18.6 29 25

Accuracy of measurement is 20% reproducible.

Different investigations show that the fecal microbiota contains bifidobacteria almost 100 to 0.1% (Table III). The range of three orders of magnitude is unlikely to be due to the fact that human beings are different. Each study presents serious statistical data and a conscientious analytical procedure. The difference is more likely to be considered as the specific features of the comparable methods for measurements.Without going into details, it may be concluded that the effect of a predominance of Bifidobacterium is produced by the routine procedure for analyzing only Bifidobacterium and opportunistic microorganisms in studying disbiosis. Eubacterium, bacteroids, and Clostridium, which are at least several times more than Bifidobacterium are seen to be out of the view of a microbiologist. This delusion looks natural if we recall that it is practice to consider within general microbiology that not more than 20% of the microorganisms in any habitat are on the average cultured in the microbial community. Molecular genetic studies indicate that 60–80% of the fecal microbiocenosis cannot be determined by cultural techniques. Mass spectrometric data correlate with genetic data (within the comparability of microbiological estimates) and equally demonstrate that Eubacterium, bacteroids, and Clostridium alone and in combination are an order of magnitude higher than Bifidobacterium.

MS made it possible to measure the numbers of more than 50 taxons of intestinal microorganisms in the feces. These data show that Eubacterium spp. Are prevalent. The affinity of Eubacterium for Clostridium should be noted. The ninth edition of Bergey’s manual (54) directly reads that the genus Eubacterium has been designed for convenience so that it should include weakly spore-forming clostridia. If the het- erogenicity of both genera, which is still known and unordered so far, is mentioned, it can be seen that the intestinal microbiota is a predominant continuum of strains and species of the genera Clostridium and Eubacterium in their present arrangement with the equivalent total amount of propionibacteria, bacteroids, bifidobacteria, and lactobacilli. The pro- portion of another biological diversity of intestinal microorganisms (as evidenced by MS) is as high as 10% in feces. The fact that the genera Clostridium and Eubacterium are closely genetically related is suggested by the current absence of specific probes for each genus. The probes designed for Clostridium determine Eubacterium in a cross-reaction and vice versa. Thus, in addition to Eubacterium, the probe proposed to determine a group of new clostridia headed by C. coccoides (intestinally detected in 1997) also includes ruminococci in this group.

The presented data suggest that the genus Eubacterium is of importance in the formation and functioning of the intestinal microbiota and we tend to consider them to be a digestively important group of peptolytic and cellulolytic organisms. The fundamental important feature of the representatives of the genus Eubacterium is noteworthy, i.e. the capacity to produce hydrogen.

 

Table IV. Comparison of data for analysis of fecal microbiota by genetic, cultural and biochemical, and mass-spectrometric studies.

Composition of adult fecal microbiota, cells/g wet weight

 

 

Mass spectrometry

Genetic study,

Cultural study

 

This is a key property of the microbial consortium that effects the digestion of an organic substrate during anaerobic processes in nature (in the marsh), in the rumen, and in biotechnology during the anaerobic fermentation of all kinds of waste products and the production of a biogas. The human intestinal mucosa is essentially a similar bioreactor. Methane is formed there and hence methanogenic archaebacteria, whose effectiveness strictly depends on the concentration of hydrogen in the system, are at work. In the methanogenic community, hydrogen-producing bacteria play a key regulatory role due to the feedback in the production and consumption of hydrogen in the primary process of carbohydrate cleavage to give rise to acetate.

There is no question that detection of a considerable amount of aerobic actinomycetes is an unexpected result. The specificity of their markers – branched FAs with a methyl group in the position Ä10 – gives no way of assuming some other taxonomic groups of microorganisms, other than the representatives of actinomycetales whose cell walls contain mycolic acids that are a source of 10Me-branched FAs. They are present in Mycobacterium, Nocardia, Rhodococcus, Actinomadura spp., and other actinomycetes, but they have not been found in higher organisms (fungi, plants, and animals). The presence of these molecules in human feces is sup- ported by mass spectra in the chromatographic peak and by relative retention time, as well as by their analysis in the composition of type cultures of respective microorganisms. The bacteria of the genera Streptomyces and Nocardiopsis are also confirmed by the unique marker iso-hexadecanoic acid (i16). Further, the profile of the branched FAs specific for streptomycetes was detected in the blood of septic patients in our practice (25). The list of actinobacteria should be extended by anaerobic actinomycetes and related microorganisms. These are Propionibacterium, Actinomyces, Brevibacterium, and corynebacteria. Finally, if we consider the fact that some manuals on microbiology, such as early ones (54), have assigned the genus Bifidobacterium to the family Actinomycetaceae so far, then it will turn out that actinomycetes are phylogenetically close to the traditionally known representatives of the intestinal parietal microbiota. With them, the intestinal micro- biota grows in importance for the host, since actinomycetes are superior to all other microorganisms in producing antibiotics and vitamins and have a powerful enzymatic apparatus. The high intestinal colonization by actinomycetes does not look an unusual phenomenon if we bear in mind that they occur widely in the environment – soil, water, air, on the inner walls of dwelling and industrial premises (55). Their habitation in the human body looks natural under such circumstances. The guides on clinical microbiology mention that actinomycetes and related organisms, such as Mycobacterium, Actinomadura, PropionibacteriumActinomycesCorynebacteriumBifidobacterium, are detectable in the human intestine and other organs. They (including Bifidobacterium) are known to be participants in infectious and inflammatory processes. Recent study of the composition of the human GI microbiota of 23 healthy adult subjects was performed on a pooled fecal bacterial DNA sample by combining genomic %G+C-based profiling and fractioning with 16S rRNA gene cloning and sequencing. The orders Coriobacteriales, Bifidobacteriales, and Actinomycetales constituted the 65 actinobacterial phylotypes (56). Earlier, nucleotide sequencing and amplification by PCR was done on the bacterial 16S ribosomal DNA present in a small bowel biopsy specimen taken from a patient with Whipple’s disease. A search by computer for similar rRNA sequences filed in databases showed the Whipple’s-associated organism to be most similar to bacteria in the genera Rhodococcus, Streptomyces, and Arthrobacter, and more weakly related to mycobacteria (57). However, the pathogenicity of actinomycetes, their antibiotic sensitivity, and treatment of their associated diseases is the subject matter of single specialized laboratories and clinics around the world. Difficulties in their bacterial diagnosis and cultivation are a handicap to the wide popularity of these microorganisms in clinical practice, for instance in multiple diseases associated with the altered intestinal microbiota (44).

Microbial markers have also been found in meconium from newborns. This confirms guesses and assumptions regarding prenatal intestinal colonization of the fetus. In fact, as reported some time ago (58), meconium dominant flora was composed of either enterobacteria or of streptococci. Staphylococcus, Corynebacterium, Clostridium (C. perfringens), BacteroidesPeptococcus represented a very small pro- portion of the total flora. In the two children aged 48 h and more, the flora was more complex and Bacteroides, Bifidobacterium, Veillonella, PeptostreptococcusClostridium, and Staphylococcus were associated with streptococci and enterobacteria. A very small number of lactobacilli were found in one child only. Later, the presence of bacteria in meconium of 21 healthy neonates was investigated. The identified isolates belonged predominantly to the genera Enterococcus and Staphylococcus (59). We found similar features in meconium microbiota in our analyses, which are in good agreement with molecular and culturing methods, as can be seen from Table II.

The microbiota of IBS patients differs in genera composition from that of healthy adults and coin- cides with the data obtained by a genetic method (26). However, the GC-MS method has the advantage of measuring the number of each taxon. That is why we can monitor the dynamic of quantitative changes in microbiota. It is clear from Tables II and III that in spite of small differences in the total amount of microorganisms, proportion of anaerobes, numbers of aerobic gram-negative bacteria and clostridia (Table III), the genera and species composition differ substantially in healthy persons and IBS patients. For instance, numbers of Bifidobacterium, LactobacillusPropionibacteriumC. propionicumEnterobacteriaceae spp., Streptococcus, and microscopic fungi decreased, while the numbers of Ruminicoccus, Peptostreptococcus, Bacteroides, Fusobacterium, and Acinetobacter increased in patients as compared with healthy donors. We dare not speculate about the decrease in numbers of bacteria in feces after treatment. But we would like to admit that this is the same bacteria (Ruminicoccus, Bacteroides, Fusobacterium, Acinetobacter), which overgrows before treatment, as compared with healthy adults (Table II). We assume also, that the general microbiota deficiency is caused by reduction of microbes in the intestine after the termination of diarrhea.

The previous studies, which have relied almost exclusively on the use of culturing methods, have generated our current understanding of gut microbiology and ecology in infants. Gastrointestinal microbial ecology is experiencing a revival because of the development of molecular techniques, particularly techniques based on 16S rRNA genes, which are used to study complex bacterial ecosystems (60). So far,only a limited number of infant microbiota studies have been performed with molecular techniques, and very limited numbers of primers were used to characterize the diversity and quantity of fecal microbes. We demonstrate GC-MS as one more approach in studying microbiota in newborn and adults. This small number of experimental results could only demonstrate method and prove their compatibility with known ones both in genera composition in feces and tendency in age, health, and disease.

 

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

 

References

  1. FranksAH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling  Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Apple Environ Microbiol. 1998;64:3336–45.
  2. Mitruka 1978. Gas chromatography applications in microbiology and medicine. New York: Wiley.
  3. Shekhovtsova NV, Osipov GA, Verkhovtseva NV, Pevzner Analysis of lipid biomarkers in rocks of the Archean crystalline basement. Proc SPIE. 2003;4939:160–8.
  4. GoodfellowM, Minnikin DE,  Chemical methods in bacterial systematics. London: Academic Press. 1985.
  5. Larsson Determination of microbial chemical markers by gas chromatography-mass spectrometry – potential for diagnosis and studies on metabolism in situ. APMIS 1994;102: 161–9.
  6. White Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Adv Limnol. 1988;31:1–18.
  7. FoxA, Rosario RMT, Larsson  Monitoring of bacterial sugars and hydroxy fatty acids in dust from air conditioners by gas chromatography-mass spectrometry. Appl Environ Microbiol. 1993;59:4354–60.
  8. SebastianA, Szponar B, Larsson  Characterization of the microbial community in indoor environments by chemical marker analysis: an update and critical evaluation. Indoor Air. 2005;151(Suppl 9):S20–6
  9. SebastianA, Larsson  Characterization of the microbial community in indoor environments: a chemical-analytical approach. Appl Envir Microbiol. 2003 Jun;69:3103–9.
  10. OsipovGA, Turova  Studying species composition of microbial communities with the use of gas chromatography- mass spectrometry. Microbial community of kaolin. FEMS Microbiol Rev. 1997;20:437–46.
  11. GorlenkoVM, Zhmur SI, Duda VI, Suzina NE, Osipov GA, Dmitriev Fine structure of fossilized bacteria in Volyn kerite. Orig Life Evol Biosph. 2000;30:567–77.
  12. MorganSL, Fox A, Gilbart  Profiling, structural characterization, and trace detection of chemical markers for microorganisms by gas chromatography-mass spectrometry. J Microbiol Methods. 1989;9:57–69.
  13. Fox Chemical markers for bacteria in extraterrestrial samples. Anat Rec. 2002;268:180–5.
  14. CristAE Jr, Johnson LM, Burke  Evaluation of the Microbial Identification System for identification of clinically isolated yeasts. J Clin Microbiol. 1996;34:2408–10.
  15. WeyantRS, Moss CW, Weaver RE, Hollis DG, Jordan JG, Cook EC, et  Identification of unusual pathogenic gram- negative aerobic and facultatively anaerobic bacteria, 2nd edn. Baltimore: Williams & Wilkins. 1996.
  16. FoxA, Schwab JH, Cochran  Muramic acid detection in mammalian tissues by gas-liquid chromatography-mass spectrometry. Infect Immun. 1980;29:526–31.
  17. FoxA, Fox K, Christensson B, Harrelson D, Krahmer  Absolute identification of muramic acid, at trace levels, in human septic synovial fluids in vivo and absence in aseptic fluids. Infect Immun. 1996;64:3911–5.
  18. LehtonenL, Eerola E, Oksman  Muramic acid in peripheral blood leukocytes of healthy human subjects. J Infect Dis 1995;171:1060–4.
  19. Maitza SK, Schotz MC, Yoshikawa TT, Guze Determinationof lipid A and endotoxin in serum by mass-spectroscopy. Proc Natl Acad Sci U S A. 1978;75:3993.
  20. BrandtzaegP, Bryn K, Kierulf P, Ovstebo R, Namork E, Aase B, et  Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation and electron microscopy. J Clin Investig 1992;89:816–23.
  21. SudIJ, Feingold  Detection of 3-hydroxy fatty acids of picogram levels in biologic specimens. A chemical method for the detection of Neisseria gonorrhoeae? J Investig Dermatol. 1979;73:521–6.
  22. SzponarB, Krasnik L, Hryniewiecki T, Gamian A, Larsson
  23. Distributionof 3-hydroxy fatty acids in tissues after intra- peritoneal injection of endotoxin. Clin Chem. 2003;49: 149–53.
  24. Ferrando R, Szponar B, Sanchez A, Larsson L,Valero- Guillen  3-Hydroxy fatty acids in saliva as diagnostic markers in chronic periodontitis. J Microbiol Methods. 2005;62:285–91
  25. OsipovGA, Beloborodova NV, Sukhova TG, Demina AM, Verkhovtseva NV, Nazhina TN, et  Preliminary differentiation of bacteria in clinical and environmental samples by fatty acid features and profiles. 4th International Symposium on the Interface between Analytical Chemistry and Microbiology, 4–7 June 2000, Tregastel, France (abstracts).
  26. BeloborodovaNV, Osipov  Small molecules originating from microbes (SMOM) and their role in microbes–host relationship. Microb Ecol Health Dis. 2000;12:12–21.
  27. KassinenA, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J, et  The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133:24–33.
  28. HopkinsMJ, Sharp R, Macfarlane  Age and disease re- lated changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 2001;48:198–205.
  29. OsipovGA, Parfenov AI, Verkhovtseva NV, Ruchkina IN, Kurchavov VA, Boiko NB, et  [Clinical significance of stud- ies of microorganisms of the intestinal mucosa by culture biochemical methods and mass fragmentography.] Eksp Klin Gastroenterol. 2003;1:59–67 (in Russian).
  30. VerkhovtsevaNV, Osipov GA, Bolysheva TN, Kasatikov VA, Kuzmina NV, Antsiferova EJ, et  Comparative investigation of vermicompost microbial communities. In: Insam H, edi- tor. Microbiology of composting. Berlin: Springer-Verlag. 2002. p. 91–111.
  31. BalowsA, Hausler KL, Hermann KL, Isenberg HD, Shadomy HJ, editors. Manual of clinical microbiology, 5th Washington: ASM. 1991. p. 317–18.
  32. “Sherlock”, Microbial identification system. Database on microbialcellular fatty  1994. Newark, DE: MIDI Inc.
  33. NicholsPD, Leeming R, Rayner MS, Latham  Use of cap- illary gas chromatography for measuring fecal-derived sterols. J Chromatogr 1996;A733:497–509.
  34. Mosca A, Summanen P, Finegold SM, De Michele G, Miragliotta Cellular fatty acid composition, soluble- protein profile, and antimicrobial resistance pattern of Eubacterium lentum. J Clin Microbiol. 1998;36:752–5.
  35. LambertMA, Armfield  Differentiation of Peptococcus and Peptostreptococcus by gas-liquid chromatography of cellular fatty acids and methabolic products. J Clin Microbiol. 1979; 10:464–76.
  36. ZhilinaTN, Kotsyurbenko OR, Osipov GA, Kostrinka NA, Zavarzin  Ruminococcus palustris sp. nov.-a psychroactive anaerobic organism from a swamp. Mikrobiologiya. 1995;64: 674–80.
  37. Kaneda Fatty acids in the genus bacillus: an example of branched chain preferences. Bacteriol Rev 1977;41:391–418.
  38. TakatoriT, Ishiguro N, Tarao H, Matsumiya  Microbial production of hydroxy and oxo fatty acids by several micro- organisms as a model of adipocere formation. Forensic Sci Int 1986;32:5–11.
  39. MossCW, Lewis  Characterization of clostridia by gas chromatography. I. Differentiation of species by cellular fatty acids. Appl Microbiol. 1967;15:390–7.
  40. BrondzI, Olsen  Multivariate analyses of cellular fatty acids in Bacteroides, Prevotella, Porhyromonas, Wolinella and Campylobacter spp. J Clin Microbiol. 1991;29:183–9.
  41. TsuchiyaH, Masaru S, Kato M, Namikawa I, Hayashi T, Tatsumi M, et  High-perfomance liquid chromatographic analysis of bacterial fatty acid composition for chemotaxo- nomic characterization of oral streptococci. J Clin Microbiol. 1986;24:81–5.
  42. VuorioR, Andersson MA, Rainey FA, Kroppenstedt RM, Kampfer P, Busse HJ, et  A new rapidly growing mycobac- terial species, Mycobacterium murale sp. nov., isolated from the indoor walls of a children’s day care centre. Int J Syst Bacteriol. 1999;49:25.
  43. PasanenA-L, Kati Y-P, Pasanen P, Kalliokoski P, Tarhanen  Ergosterol content in various fungal species and biocontam- inated building materials. Appl Environ Microbiol. 1999;65:138–42.
  44. Howell SA, Moore MK, Mallet AI, Noble WC. Sterols of fungiresponsible for superficial skin and nail  J Gen Microbiol. 1990;136:241–7.
  45. McNabbA, Shuttleworth R, Behme R, Colby  Fatty acid characterization of rapidly growing pathogenic aerobic ac- tinomycetes as a means of identification. J Clin Microbiol. 1997;35:1361–8.
  46. GeisG, Leying H, Suerbaum S, Opferkuch  Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori. J Clin Microbiol. 1990;28:930–2.
  47. BirekC, Grandhi R, McNeil K, Singer D, Ficarra G, Bowden
  48. Detectionof Helicobacter pylori in oral aphthous ulcers. J Oral Pathol Med. 1999;28:197–203.
  49. FarsakB, Yildirir A, Akycn Y, Pinar A, Öç M, Böke E, et  Detection of Chlamydia pneumoniae and Helicobacter pylory DNA in human atherosclerotic plaques by PCR. J Clin Microbiol. 2000;38:4408–11.
  50. Jantzen E, Berdal BP, Omland Fatty acid taxonomy of Haemophilus species, Pasteurella multocida, Actinobacillus actinomycetemcomitans and Haemophilus vaginalis (Coryne- bacterium vaginale). Acta Path Microbiol Scand. 1991; 88B:89–93.
  51. StoakesL, John MA, Lannigan R, Schieven BC, Ramos M, Harley D, et  Gas-liquid chromatography of cellular fatty acids for identification of staphylococci. Clin Microbiol. 1994;32:1908–10.
  52. Bernard KA, Bellefeuille M, Ewan Cellular fatty acid composition as an adjunct to the identificationof asporogenous, aerobic gram-positive rods. J Clin Microbiol 1991;29:83–9.
  53. HarmsenHJM, Raangs GC, He T, Degener JE, Welling Extensive set of 16S rRNA probes for detection of bacteria in human feces. Appl Environ Microbiol 2002;68:2982–90.
  54. SchaechterM, Medoff G, Eisenstein BJ,  Mechanisms of microbial disease. Baltimore: Williams & Wilkins. 1993.
  55. Wittmann DH. Intra-abdominal infections. New York: Marcel Dekker, Inc.
  56. HoltJG, Krieg NR, Sneath PHA, Staley JT, Williams ST,  Bergey’s manual of determinative bacteriology, 9th edn. Baltimore: Williams & Wilkins. 1993.
  57. Andersson MA, Nikulin M, Koljalg U, Andersson MC, RaineyF, Reijula K, et  Bacteria, molds, and toxins in water-damaged building materials. Appl Environ Microbiol 1997;63:387–93. Krogius-Kurikka L, Kassinen A, Paulin L, Corander J, Makivuokko H, Tuimala J, et al. Sequence analysis of percent G+C fraction libraries of human faecal bacterial DNA reveals a high number of Actinobacteria. BMC Microbiol 2009;9:68.
  58. WilsonKH, Blitchington R, Frothingham R, Wilson  Phylogeny of the Whipple’s disease-associated bacterium. Lancet 1991;338:474–5.
  59. PatteC, Tancrede C, Raibaud P, Ducluzeau  First steps in the bacterial colonization of the digestive tract of neonates. Ann Microbiol (Paris) 1979;130A:69–84.
  60. JimenezE, Marin ML, Martin R, Odriozola JM, Olivares M, Xaus J, et  Is meconium from healthy newborns actually sterile? Res Microbiol 2008;159:187–93.
  61. FavierCF, Vaughan EE, De Vos WM, Akkermans  Molecular monitoring of succession of bacterial communi- ties in human neonates. Appl Environ Microbiol 2002;68: 219–26.

 

 

 

EDITORIAL COMMENTS

 

G.A. Osipov, N.B. Boiko, N.F. Fedosova, S.A. Kasikhina and

K.V. Lyadov: Comparative gas chromatography-mass spectrometry study of the composition of microbial chemical markers in feces

 

 

 

 

This article is a part of a very ambitious project, challenging the genetic way of determining the composition of a mixture of known and unknown microorganisms. Instead of studying microbialderived genetic fingerprints the authors are studying lipid fingerprints in human fecal samples. Based upon an assumption that certain lipids are unique to certain species, the authors used gas chromatography-mass spectrometry technology for a qualitative and quantitative evaluation of lipids present in feces.

Both the reviewers are concerned about the specificity of the lipid markers in relation to specific microorganisms. As stated by one of the reviewers: ‘The authors’ statements that a certain microbe contains a certain lipid might be correct. The problem comes when they state that a certain lipid denotes a certain specific microbe. This is highly speculative.’ Surely, I am dealing with my reviewers’ concerns.

Why then accept a speculative paper with several weaknesses? Simply spoken: it represents a valuable approach to studying the human gut flora and its possible influence upon the human body. Again to simplify: neither microbial genes nor microbial names cause any harm to the body, but microbial products may do. Many lipids are very active biological compounds indeed. The presence of such compounds in the gut may have physiological and pathophysiological consequences for the host. That represents Microbial Ecology in Health and Disease!

Tore Midtvedt Editor-in-Chief

Correspondence: G. A. Osipov, 4-2-1, 3-ya Karacharovskaya str, 109202 Moscow, Russia. E-mail: osipovga@mail.ru or osipovga@rusmedserv.com

(Received 20 August 2009; accepted 15 October 2009)

ISSN 0891-060X print/ISSN 1651-2235 online © 2009 Informa UK Ltd. (Informa Healthcare, Taylor & Francis AS) DOI: 10.3109/08910600903462657

Microbial Ecology in Health and Disease. 2009; 21: 159–171

Комментировать